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Within the f r amework  of a two- l iqu id  ( two-veloci ty  and t w o - t e m p e r a t u r e )  model  of a con- 
t inuous medium,  the a r t i c l e  cons ide r s  the flow of a mix tu re  of a gas  and fore ign  p a r t i c l e s  
in the subsonic ,  t r anson ic ,  and supe r son ic  p a r t s  of a Laval  nozzle .  In the ca se  of a thin 
l a y e r  of pu re  gas n e a r  the wall ,  the p r o b l e m  is solved in two s t ages .  F i r s t ,  the method 
of e s t ab l i shmen t  is  used to ca l cu la t e  the co re  of the flow, where  the gas with the p a r t i c l e s  
is  flowing; under  these  c i r c u m s t a n c e s ,  the p a r a m e t e r s  in the l a y e r  of pu re  gas  a r e  d e t e r -  
mined approx imate ly ;  then s impl i f i ed  equations (of the type of the equations of the bound- 
a ry  l aye r )  a r e  used to find the d i s t r ibu t ion  of the p a r a m e t e r s  in the zone of pu re  gas ,  and 
the flow in the eo re  of the s t r e a m  is ref ined.  Examples  of the ca lcu la t ion  a r e  given.  Use 
of the method developed p e r m i t t e d  e s t ab l i sh ing  some of the spec ia l  c h a r a c t e r i s t i c s  of the 
flow of a mix tu re  of gas  with p a r t i c l e s  in a Laval  nozzle  in the case  of Stokes flow around 
the fore ign  p a r t i c l e s .  

The method of e s t ab l i shmen t  was used in [1, 2] to solve  the d i rec t  p r o b l e m  of the flow of a m ix tu r e  
of a gas  with p a r t i c l e s  in a Laval  nozzle ,  in a two-d imens iona l  s ta tement .  However,  due to the lag of the 
p a r t i c l e s ,  a l a y e r  of pure  gas  is  fo rmed  at the wal l .  This l a y e r  can be r a t h e r  thin but, with any a r b i t r a r i l y  
sma l l  th ickness ,  in the ca se  of a f ini te  r e l a t i ve  m a s s  flow ra t e  of the p a r t i c l e s  (the m a s s  flow ra te  of the 
p a r t i c l e s  to the m a s s  flow r a t e  of the mixture) ,  the p a r a m e t e r s  of the gas in the l a y e r  change by a f inite 
amount.  This l a t t e r  c i r c u m s t a n c e  compl i ca t e s  cons ide rab ly  the use  of the method of e s t ab l i shmen t  in the 
ca se  of a sma l l  th ickness  of the l a y e r  n e a r  the wall ,  s ince  to achieve a s a t i s f a c t o r y  degree  of a c c u r a c y  in 
a l a y e r  of pure  gas would r equ i r e  a r a t h e r  sma l l  division,  which would lead to a c ons i de r a b l e  i n c r e a s e  in 
the ca lcu la t ion  t ime  of the p rob l em.  

In [3] the p rob l em of the flow of a mix tu re  of a gas  with p a r t i c l e s  in a Laval  nozzle  was solved using 
the method of p e r t u r b a t i o n s .  It was pos tu la ted  that  the coeff ic ients  (pf and ~pq, de t e rmin ing  the in te rac t ion  
between the p a r t i c l e s  and the gas ,  a r e  g r ea t .  The solut ion was found in the fo rm of expansions  in t e r m s  of 

the s m a l l  p a r a m e t e r s  e 1 = 1A0 f and e 2 = 1/~0q. Simplif ied equations were  obtained, de sc r ib ing  the flow in a 
l a y e r  of pu re  gas nea r  the wal l .  It was noted that,  s ince  the sma l l  p a r a m e t e r  appea r s  in the equations only 
through the th ickness  of the l aye r ,  which, in the case  cons ide red  in the ci ted a r t i c l e ,  is  p ropor t iona l  to e 1, 
then exact ly  the s ame  re l a t ionsh ips  will  be valid with any a r b i t r a r y  value of e 1 for  a l a y e r  of gas  whose 
th ickness  is sma l l  in compar i son  with the c h a r a c t e r i s t i c  d imension of the nozzle .  

In acco rdance  with what has been said  above, in the  p r e s e n t  work the solut ion of the d i r ec t  p rob l em 
of the flow of a mix tu re  of gas with p a r t i c l e s  in a Laval  nozzle ,  in the ca se  of a suff ic ient ly  thin l a y e r  n e a r  
the wall ,  is c a r r i e d  out in two s t ages .  F i r s t ,  the method of e s t ab l i shmen t  is used to ca lcu la te  the co re  of 
the fl9w , where  the gas  with the p a r t i c l e s  is flowing. The p r o b l e m  is solved with a d iv is ion  which is c o a r s e  
for  the l a y e r  n e a r  the wall ,  but suff ic ient  f rom the point of view of a c c u r a c y  in the  co re .  Then s impl i f ied  
equations based  on the d i s t r ibu t ions  of the p a r a m e t e r s  of the gas along the l ine of separa t ion ,  obtained by 
the method of e s t ab l i shment ,  a re  used to find the flow in the l a y e r  n e a r  the wall;  this  is  followed by a r e -  
f inement of the flow in the co re .  The use  of the method developed in the work has made  it p o s s i b l e  to e s -  
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tablish and study some of the special  charac te r i s t i c s  of the flow of a mixture of a gas and par t ic les  in a 
Lava1 nozzle, with a Stokes law. 

Let us consider  the flow of a mixture  of a gas and foreign par t ic les  in an ax isymmetr ic  Laval nozzle. 
We locate the origin of a cylindrical  sys tem of coordinates in the minimal c ross  section of the nozzle, we 
direct  the x axis along the axis of the flow toward the side of the motion, and the y axis is perpendicular  
to the x axis. It is assumed that there  are  no coagulation, phase t ransformat ions ,  external forces ,  or  heat 
sources ,  and that the volume of the par t ic les  is negligibly small  in compar ison  with the volume of the gas.  
We assume that the flow under considerat ion can be descr ibed within the f ramework  of a modeI of a two- 
liquid continuous medium. The equations of the flow of such a medium are  given, for example, in [2]. 

Within the f ramework of the above model, the interaction between the gas and the par t ic les  is due to 
the force f with which the gas acts on the par t ic les ,  and to the heat flux q f rom the gas to the par t ic les ;  
here  by f and q there  a re  understood quantities relat ing to one par t ic le ,  r e fe r red  to its mass .  For  f and q 
the following expressions are  adopted: f= J ( W - W s ) ;  q = ~0q ( T - T s )  , where W and T are  the vector  of the 
velocity and the t empera tu re  of the gas, and W s and T s a re  the analogous values for  the par t ic les .  In what 
follows, the coefficients ~0 f and rgq will be assumed constant, which corresponds  to the conditions of Stokes 
flow around each par t ic le .  We note that the la t ter  assumption with respec t  to the conditions of flow around 
the par t ic les  is fundamental f rom the point of view of the method used. 

We consider  a perfect  gas with constant heat capacity and adiabatic index ~4. The specific internal 
energy of the par t ic les  e s is a l inear  function of the i r  t empera tu re  T s, i.e., e s =ST s, where 5=cons t  is 
the specific heat capacity of the par t ic les .  

All the quantities in the relat ionships given and in what follows will be dimensionless.  Let L, W . ,  
p .  be charac te r i s t i c  quantities with the dimensional: t ies of length, velocity, and density, and let R be the 
dimensional value of the gas constant.  Then reduction to dimensionless form is achieved by re fe r r ing  the 
spatial variables  to L, the velocities to W . ,  the densities to p . ,  the p r e s s u r e  to 0 . W .  2, the enthalpy and 
the internal energy to W2., the t empera tu re  to W2/R,  the heat capacity of the par t ic les  to R, the force f 
to W2/L ,  and the heat flux q to W3, /L.  As L there  iS taken the radius of the minimal c ross  section of the 
nozzle, and p .  and W .  a re  taken as the cr i t ical  density and velocity of the mixture with equilibrium flow, 
i.e., flow without lag of the par t ic les  with respec t  to the velocity or the tempera ture .  

The solution of the s teady-s ta te  problem is obtained during the p rocess  of the establishment of the 
p r e s su re .  The boundary conditions a re  taken to coincide with the boundary conditions of the corresponding 
s teady-s ta te  problem. It iS assumed that the nozzle is joined smoothly to a sere:infinite cylindrical  tube. 
Then, with x ~ -  ~, there  is flow without dynamic (with respect  to the velocity) or  thermal  (with respect  
to the temperature)  lag of the par t ic les ,  with vert ical  components of the velocit ies of the gas and the pa r -  
t icles equal to zero .  The distributions of the total enthalpy and entropy of the mixture,  and the ratio of 
the density of the par t ic les  to the density of the gas a re  assumed constant over  the c ross  section. It is 
well known (see, for  example, [3]) that the equilibrium flow of a mixture  of a gas and par t ic les  is equivalent 
to the flow of a gas with a density pz=P +Ps and an effective adiabatic index ~4 e, which is defined using the 
following relat ionships:  

Here p, Ps, PZ are  the densities of the gas, the par t ic les ,  and the mixture,  respectively,  and m =p/ip +Ps) 
is a given constant, equal to the relat ive mass  flow ra te  of the gas with x ~ -  ~ .  In car ry ing  out the calcu-  
lations, the boundary conditions were car r ied  to a sufficiently distant c ross  section x = x  0 in the cylindrical  
pa r t  of the channel: 

At the wall of the channel and at the axis the condition of impermeabi l i ty  for  the gas is satisfied. 
For  the par t ic les ,  such a boundary condition is not set.  However, it is postulated that there  is no reflection 
of par t ic les  f rom the wall and no intersect ion of the flow lines of the par t ic les  in the field of the flow. The 
sat isfaction of the la t ter  condition can be verif ied af ter  solution of the problem.  When this condition breaks 
down, a descr ipt ion of the flow within the f ramework of a two-liquid medium becomes impossible.  

The outlet c ross  section of the nozzle is taken so far  in the expanding par t  that there  the condition 
u > a is satisfied, where u is the project ion of the velocity of the gas W on the x axis; a = n ~ - - ~  is the speed 
of sound in the gas; therefore ,  in this c ro s s  section no kind of additional boundary conditions must  be set. 

The s teady-s ta te  field of the flow is obtained during the p rocess  of establishment with respec t  to the 
t ime.  The special charac te r i s t i c s  of the difference scheme used with establishment a re  set forth in [2]. 
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The distributions of the pa ramete r s  along the line of separat ion between the l aye r  of pure gas and the core  
of the flow, obtained as a resul t  of establishment,  using simplified equations proposed in [3], a re  used to 
find the flow in the l ayer  near  the wall. 

The flow in the l aye r  of pure gas is considered in the curvi l inear  sys tem of coordinates ~'n, connected 
with the wall of the nozzle; the ~ and n axes a re  directed along the tangent and along a normal  to the wall on 
the gas side, respect ively.  It must be noted that this approach permi t s  calculation of the layer  nea r  the 
wall over  c ross  sections normal  to the wall. The distribution of the pa rame te r s  in the layer  of pure gas, 
with an accuracy  up to 0 (e), where e is a small  pa ramete r ,  equal to the ratio of the thickness of the layer  
to the charac te r i s t i c  dimension of the problem in the c ross  section v= coast, is found f rom the following 
sys tem of equations: 

Op 
i(p, p)+ ULI2=H(~); S(p~ p)~S(~); ~-n = pU2K' dq~ = - -  cy~pUdn, 

where U is the project ion of the vec tor  of the velocity of the gas on the T axiS; r is the s t r eam function; 
c is a constant, which is so selected that, with r =0 at the axis of symmet ry ,  the value of the s t r eam func- 
tion at the wall tw will be equal to unity; S is the entropy; K is the curvature  of the wall, and the functions 
H(r and S(r are  determined f rom the values of the total enthalpy and entropy of the gas at the line of 
separation.  As an independent variable,  it is convenient to consider  r The p a r a m e t e r s  are  determined 
successively ,  f rom the line of separat ion where r = r (the subscr ipt  d relates  to the line of separation) to 
the point where r162 here  ~b w is found f rom the value of the s t r eam function at the point of the descent 
of the line f rom the wall. Under these c i rcumstances ,  the line r162  will not coincide with the given wall 
of the nozzle, which is connected with the e r r o r s  admitted into the calculations, and with the effect of the 
nonuaiformity of the flow in the l aye r  of pure gas.  

The contour of the nozzle is co r rec ted  taking account of the thickness of the displacement,  and the 
flow is calculated again using the method of establishment.  In the following stage, the p a r a m e t e r s  in the 
l aye r  near  the wall a re  determined.  Calculations have shown that, even af ter  a single recalculat ion of 
the contour, the line r = tw is located considerably c lose r  to the upper wall of the given nozzle than with 
the original determination of the pa r ame te r s  in the l ayer  near  the wall. The deviation of the line r =r 
f rom the start ing contour of the nozzle with the conditions under considerat ion was approximately 1%. 
The p rocess  of success ive  approximations described above can be continued. 

The basic calculations were made for  an ax isymmetr ic  nozzle, whose contour is given in the follow- 
ing manner .  The constr ict ing and expanding par ts  were formed by segments  of s traight  lines, with angles 
of inclination to the x axis of 30 and 15 ~ respect ively .  The rect i l inear  sections were  smoothly connected 
together  by the arc  of a c i rc le  of unit radius (all the dimensions were re fe r red  to the ordinate of the min-  
imal c ro s s  section of the nozzle}. The constr ic t ing par t  of the nozzle joins the arc  of a c i rc le  of radius 
r = 2, going over  smoothly to a cyl indrical  section of the same radius. The constants n and 6 were taken 
equal to 1.4 and 0.7, respectively.  

In Figs. 1 and 2, where the scale along the y axis is twice as large  as along the x axis, the solid 
curves  i l lustrate  lines of constant Mach numbers  of the gas for  the cases  m =  1/2 and 1/4, respect ively;  
here ~pf=2 and ~pq =4. The Mach number  was calculated f rom the speed of sound in the gas M = W / a .  The 
dashed line shows the line of separat ion.  It must  be noted that the shift of the sonic line M = 1 downstream 
f rom the minimal c ross  section depends strongly on the relative mass  flow rate of the par t ic les  and, at 
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the axis, amounts to 0.85 and 4.29 radii of the throat  of the nozzle, with m = 1/2 and 1/4, respectively.  In 
the l aye r  near  the wall, there  is intense accelera t ion of the flow; the flow there  is essential ly nonuniform. 

During the course  of the calculations,  the p a r a m e t e r  (pf was variedl here the value of (pq was always 
equated to the doubled value of (pf. Figure 3 shows the distribution of M for the gas along the axis of the 
nozzle in its expanding par t  with m = 1/2. Curves 1-10 in Figs.  3 and4 correspond to values of the in ter -  
action coefficient of 0; 0.02; 0.05; 0.1; 0.2; 0.5; 1.0; 2.0; 8.0, and to equilibrium flow without velocity or  
t empera tu re  lag of the par t ic les  (the la t te r  cor responds  to ~,f=r162 It must  be noted that M in the outlet 
c ross  section of the nozzle is always less  than the value corresponding to frozen flow, where there  is no 
interaction between the phases (however, it can be ei ther  g r ea t e r  or less than the value corresponding to 
equilibrium flow). In some cases ,  the p resence  of par t ic les  leads to a situation in which, with a r i se  in 
the value of x, the Maeh number  at the axis of the nozzle s tar ts  to decrease .  The la t ter  can be explained 
by the predominance of the braking action of the par t ic les  over  the accelera t ion connected with the expan- 
sion of the nozzle.  

Figure 4 shows the change in some of the quantities which determine the force action of the par t ic les  
on the gas, for  different interaction coefficients.  A decrease  in q~f leads to an increase  in the lag of the 
par t ic les  with respec t  to the velocity. At the same time, as can be seen f rom Fig. 4, the value of K 1= ~f(1-- 
Ws/W), whose distribution along the axis of the nozzle is shown by the dashed-dot curve,  increases  mono- 
tonically with a r i se  in the value of ~f, for  all values of x. However, the force action of the par t ic les  on 
the gas is determined not only by the lag of the par t ic les  with respect  to the velocity, but also by the rat io 
of the densit ies of the par t ic les  and the gas.  The change in the value of P s / P  along the axis of the nozzle 
for  different values of ~f  is shown by the dashed curves .  It must be noted that, with a t ransi t ion f rom 
equilibrium flow conditions to frozen conditions, there  is a r ise  in the ratio of the densities of the par t ic les  
and the gas over  a lmost  the whole length of the nozzle.  The la t ter  leads to a nonmonotonic change, with 
respect  to ~f, in the value of K 2 = J ( 1 - - W s / W ) P s / P ,  taking account both of the contribution of the dynamic 
lag of the par t ic les ,  and of the ratio of the densities in the force action of the par t ic les  on the gas.  The 
distributions of the va lue  of K 2 along the x axis for different values of (pf a re  shown by the solid curves .  
The above-noted nonmonotonicity may be the reason for the previously discussed special  charac te r i s t ic  
in the behavior  of M for  the gas at the axis of the nozzle with a change in the value of 4o f. Art ic le  [4], which 
gives a review on one-dimensional  two-phase flow in nozzles,  also contains data which bear  witness to a 
nonmonotonic change in the velocity of the gas with an increase  in the interact ion coefficient.  

In conclusion, the author thanks A. N. Kraiko for  his direct ion of the work, L. E. Sternin for  his 
valuable observat ions,  and E. V. Buganov and L. P. Frolov for  their  aid in the work. 
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IN T H E  P R E S E N C E  O F  P H A S E  T R A N S F O R M A T I O N S  

G.  A .  S a l t a n o v  a n d  R .  A .  T k a l e n k o  

FLOW 

UDC 533.6.011 +536.423.4 

INTRODUCTION 

Condensation of supersaturated vapor in a transonic flow can lead to an unsteady-state character of 
the flow. This is due to the evolution of the latent heat of condensation, to the formation of a shock wave, 
and to its interaction with the zone of evaporation. This phenomenon was first noted in [1, 2], in which it is 
shown that the character of the motion of the shock wave depends on the parameters in the initial cross 
section, the relative moisture content, and the contour of the nozzle. In [3] there were measured consider- 
able ptflsations of the parameters of the flow (with a frequency of 500-1000 Hz), arising with the flow of 
moist air and pure water vapor in air. In [4] an approximate law of similarity was introduced for the dimen- 
sionless frequency of an unsteady-state flow. In communications [5, 6] the phenomenon under consideration 
was studied by the method of the inversion of the action; [7, 8] give the results of theoretical calculations 
and an experimentally confirmed diagram, making it possible to determine the boundaries of the .region of 
instability of the flow. It has been found recently that the frequency of the pulsations of the pressure and 
the density in a flow with the condensation of moist air can attain 6000 Hz. In the present work, a modifica- 
tion of the method of Godunov [I0] is used to obtain a numerical solution of a system of equations describing 
an unsteady-statequasi-one-dimensional flow with spontaneous condensation in the transonic part of a Laval 
nozzle. Calculations of nonequilibrium unsteady-state flows in nozzles by the method of establishment have 
also been made previously, for example, in [II, 12] (mixed flow in nozzles), [13] (flow taking account of 
vibrational relaxation and nonequilibrium chemical reactions), and [14] (two-phase flow in a nozzle, with 
disagreement of the phases with respect to velocities and temperatures). The specific characteristic of 
the present problem consists in the fact that, during the process of establishment with steady-state initial 
and boundary conditions, the limiting state is not steady-state; however, a known periodicity is observed. 

i. Let us consider the unsteady-state quasi-one-dimensional flow of supersaturated vapor in a Laval 
nozzle, without taking account of viscosity, thermal conductivity, or radiation. We assume that the velocities 
of the phases are identical, and that the condensation is spontaneous. The dependence of the area of the 
transverse cross section of the nozzle on the coordinate x, varying along the axis, is given by the function 
F(x); here x = 0 corresponds to the minimal cross section of the nozzle. Let p be the pressure, p the den- 
sity of the mixture, u the velocity, and t the time; the parameters of the condensing phase have the su0er- 
script zero. The basic equations of the conservation of mass, momentum, and energy can be written in the form 

o +~(,ouF) 0; 0-~ (pF)  = 

~--[-(9uF) + ~ [(p + pu ~) F] = p ~ ; 

--or oF h - -  7 + + ~ x  9uF h-,-' = 0 .  (1.1) 
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