SOLUTION OF THE DIRECT PROBLEM OF THE FLOW
OF A TWO~PHASE MIXTURE OF A GAS AND FOREIGN
SOLID OR LIQUID PARTICLES IN A LAVAL NOZZLE

V. 1. Kopchenov UDC 533.6.011.3

Within the framework of a two-liquid (two-velocity and two~temperature) model of a con-
tinuous medium, the article considers the flow of a mixture of a gas and foreign particles
in the subsonic, transonic, and supersonic parts of a Laval nozzle. In the case of a thin
layer of pure gas near the wall, the problem is solved in two stages. First, the method
of establishment is used to calculate the core of the flow, where the gas with the particles
is flowing; under these circumstances, the parameters in the layer of pure gas are deter-
mined approximately; then simplified equations (of the type of the equations of the bound-
ary layer) are used to find the distribution of the parameters in the zone of pure gas, and
the flow in the core of the stream is refined. Examples of the calculation are given. Use
of the method developed permitted establishing some of the special characteristics of the
flow of a mixture of gas with particles in a Laval nozzle in the case of Stokes flow around
the foreign particles.

The method of establishment was used in [1, 2] to solve the direct problem of the flow of a mixture
of a gas with particles in a Laval nozzle, in a two-dimensional statement. However, due to the lag of the
particles, a layer of pure gas is formed at the wall. This layer can be rather thin but, with any arbitrarily
small thickness, in the case of a finite relative mass flow rate of the particles (the mass flow rate of the
particles to the mass flow rate of the mixture), the parameters of the gas in the layer change by a finite
amount. This latter circumstance complicates considerably the use of the method of establishment in the
case of a small thickness of the layer near the wall, since to achieve a satisfactory degree of accuracy in
a layer of pure gas would require a rather small division, which would lead to a considerable increase in
the calculation time of the problem.

In [3] the problem of the flow of a mixture of a gas with particles in a Laval nozzle was solved using
the method of perturbations. It was postulated that the coefficients <pf and ¢4, determining the interaction
between the particles and the gas, are great. The solution was found in the form of expansions in terms of
the small parameters ¢,=1/¢! and e,=1/¢4, Simplified equations were obtained, describing the flow in a
layer of pure gas near the wall. It was noted that, since the small parameter appears in the equations only
through the thickness of the layer, which, in the case considered in the cited article, is proportional to £,
then exactly the same relationships will be valid with any arbitrary value of €, for a layer of gas whose
thickness is small in comparison with the characteristic dimension of the nozzle.

In accordance with what has been said above, in the present work the solution of the direct problem
of the flow of a mixture of gas with particles in a Laval nozzle, in the case of a sufficiently thin layer near
the wall, is carried out in two stages. First, the method of establishment is used to calculate the core of
the flow, where the gas with the particles is flowing. The problem is solved with a division which is coarse
for the layer near the wall, but sufficient from the point of view of accuracy inthe core. Then simplified
equations based on the distributions of the parameters of the gas along the line of separation, obtained by
the method of establishment, are used to find the flow in the layer near the wall; this is followed by a re-
finement of the flow in the core. The use of the method developed in the work has made it possible to es-
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tablish and study some of the special characteristics of the flow of a mixture of a gas and particles in a
Laval nozzle, with a Stokes law.

Let us consider the flow of a mixture of a gas and foreign particles in an axisymmetric Laval nozzle.
We locate the origin of a cylindrical system of coordinates in the minimal cross section of the nozzle, we
direct the x axis along the axis of the flow toward the side of the motion, and the y axis is perpendicular
to the x axis. It is assumed that there are no coagulation, phase transformations, external forces, or heat
sources, and that the volume of the particles is negligibly small in comparison with the volume of the gas.
We assume that the flow under consideration can be described within the framework of a model of a two-
liquid continuous medium. The equations of the flow of such a medium are given, for example, in [2].

Within the framework of the above model, the interaction between the gas and the particles is due to
the force f with which the gas acts on the particles, and to the heat flux q from the gas to the particles;
here by f and q there are understood quantities relating to one particle, referred to its mass, For fandq
the following expressions are adopted: f=<pf(W—Ws); qg=¢4 (T—Tg), where W and T are the vector of the
velocity and the temperature of the gas, and Wy and Tg are the analogous values for the particles. In what
follows, the coefficients qof and ¢9 will be assumed constant, which corresponds to the conditions of Stokes
flow around each particle, We note that the latter assumption with respect to the conditions of flow around
the particles is fundamental from the point of view of the method used.

We consider a perfect gas with constant heat capacity and adiabatic index . The specific internal
energy of the particles eg is a linear function of their temperature Tg, i.e., eg =0T, where d=const is
the specific heat capacity of the particles.

All the quantities in the relationships given and in what follows will be dimensionless. Let L, W,
px be characteristic quantities with the dimensionalities of length, velocity, and density, and let R be the
dimensional value of the gas constant. Then reduction to dimensionless form is achieved by referring the
spatial variables to L, the velocities to Wy, the densities to p,, the pressure to p, W, % the enthalpy and
the internal energy to W%, the temperature to W% /R, the heat capacity of the particles to R, the force f
to W% /L, and the heat flux q to W& /L. As L there is taken the radius of the minimal cross section of the
nozzle, and px and Wy are taken as the critical density and velocity of the mixture with equilibrium flow,
i.e., flow without Iag of the particles with respect to the velocity or the temperature.

The solution of the steady-~state problem is obtained during the process of the establishment of the
pressure. The boundary conditions are taken to coincide with the boundary conditions of the corresponding
steady-state problem. It is assumed that the nozzle is joined smoothly to a semiinfinite cylindrical tube,
Then, with x —— =, there is flow without dynamic (with respect to the velocity) or thermal (with respect
to the temperature) lag of the particles, with vertical components of the velocities of the gas and the par-
ticles equal to zero, The distributions of the total enthalpy and entropy of the mixture, and the ratio of
the density of the particles to the density of the gas are assumed constant over the cross section. It is
well known (see, for example, [3]) that the equilibrium flow of a mixture of a gas and particles is equivalent
to the flow of a gas with a density py=p +pg and an effective adiabatic index e, which is defined using the
following relationships:

B " 1—m
e =g 1 (ﬁ_z—i—!' " 6)'
Here P, Pg, Py are the densities of the gas, the particles, and the mixture, respectively, and m=p/ (0 +pg)
is a given constant, equal to the relative mass flow rate of the gas with x ——, In carrying out the calcu-
lations, the boundary conditions were carried to a sufficiently distant cross section x=x; in the cylindrical
part of the channel.

At the wall of the channel and at the axis the condition of impermeability for the gas is satisfied.
For the particles, such a boundary condition is not set. However, it is postulated that there is no reflection
of particles from the wall and no intersection of the flow lines of the particles in the field of the flow. The
satisfaction of the latter condition can be verified after solution of the problem. When this condition breaks
down, a description of the flow within the framework of a two-liquid medium becomes impossible.

The outlet cross section of the nozzle is taken so far in the expanding part that there the condition
u> ¢ is satisfied, where u is the projection of the velocity of the gas W on the x axis; a =ynp/p is the speed
of sound in the gas; therefore, in this cross section no kind of additional boundary conditions must be set.

The steady-state field of the flow is obtained during the process of establishment with respect to the
time. The special characteristics of the difference scheme used with establishment are set forth in [2].
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The distributions of the parameters along the line of separation between the layer of pure gas and the core
of the flow, obtained as a result of establishment, using simplified equations proposed in [3], are used to
find the flow in the layer near the wall.

The flow in the layer of pure gas is considered in the curvilinear system of coordinates Tn, connected
with the wall of the nozzle; the v and n axes are directed along the tangent and along a normal to the wall on
the gas side, respectively. It must be noted that this approach permits calculation of the layer near the
wall over cross sections normal to the wall. The distribution of the parameters in the layer of pure gas,
with an accuracy up to 0 (¢), where £ is a small parameter, equal to the ratio of the thickness of the layer
to the characteristic dimension of the problem in the cross section T=const, is found from the following
system of equations:

i(p, 0)+U¥2=H(W); S(p, 0)=50); 2L = pUK, dy = — cy*plUdn,

where U is the projection of the vector of the velocity of the gas on the T axis; ¥ is the stream function;

¢ is a constant, which is so selected that, with ¥ =0 at the axis of symmetry, the value of the stream func-
tion at the wall ¥y, will be equal to unity; S is the entropy; K is the curvature of the wall, and the functions
H@) and S@) are determined from the values of the total enthalpy and entropy of the gas at the line of
separation, As an independent variable, it is convenient to consider . The parameters are determined
successively, from the line of separation where § =34 (the subscript d relates to the line of separation) to
the point where ¥ =¥y; here gy, is found from the value of the stream function at the point of the descent
of the line from the wall. Under these circumstances, the line ¥ =y, will not coincide with the given wall
of the nozzle, which is connected with the errors admitted into the calculations, and with the effect of the
nonuniformity of the flow in the layer of pure gas.

The contour of the nozzle is corrected taking account of the thickness of the displacement, and the
flow is calculated again using the method of establishment. In the following stage, the parameters in the
layer near the wall are determined, Calculations have shown that, even after a single recalculation of
the contour, the line ¥ =y, is located considerably closer to the upper wall of the given nozzle than with
the original determination of the parameters in the layer near the wall, The deviation of the line Y=ty
from the starting contour of the nozzle with the conditions under consideration was approximately 1%.
The process of successive approximations described above can be continued,

The basic calculations were made for an axisymmetric nozzle, whose contour is given in the follow-
ing manner. The constricting and expanding parts were formed by segments of straight lines, with angles
of inclination to the x axis of 30 and 15°, respectively, The rectilinear sections were smoothly connected
together by the arc of a circle of unit radius (all the dimensions were referred to the ordinate of the min-
imal cross section of the nozzle}. The constricting part of the nozzle joins the arc of a circle of radius
T =2, going over smoothly to a cylindrical section of the same radius. The constants ® and & were taken
equal to 1.4 and 0.7, respectively. '

In Figs. 1 and 2, where the scale along the y axis is twice as large as along the x axis, the solid
curves illustrate lines of constant Mach numbers of the gas for the cases m=1/2 and 1/4, respectively;
here cpf =2 and 9 =4. The Mach number was calculated from the speed of sound in the gas M=W/a. The
dashed line shows the line of separation. It must be noted that the shift of the sonic line M=1 downstream
from the minimal cross section depends strongly on the relative mass flow rate of the particles and, at
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the axis, amounts to 0.85 and 4.29 radii of the throat of the nozzle, with m=1/2 and 1/4, respectively. In
the layer near the wall, there is intense acceleration of the flow; the flow there is essentially nonuniform.

During the course of the calculations, the parameter <pf was varied; here the value of ¢9 was always
equated to the doubled value of ¢°. Figure 3 shows the distribution of M for the gas along the axis of the
nozzle in its expanding part with m=1/2. Curves 1-10 in Figs,3and4 correspond to values of the inter-
action coefficient of 0; 0.02; 0.05; 0.1; 0.2; 0.5; 1.0; 2.0; 8.0, and to equilibrium flow without velocity or
temperature lag of the particles {the latter corresponds to <pf=°°). It must be noted that M in the outlet
cross section of the nozzle is always less than the value corresponding to frozen flow, where there is no
interaction between the phases (however, it can be either greater orless than the value corresponding to
equilibrium flow), In some cases, the presence of particles leads to a situation in which, with a rise in
the value of x, the Mach number at the axis of the nozzle starts to decrease. The latter can be explained
by the predominance of the braking action of the particles over the acceleration connected with the expan-
sion of the nozzle,

Figure 4 shows the change in some of the quantities which determine the force action of the particles
on the gas, for different interaction coefficients. A decrease in <pf leads to an increase in the lag of the
particles with respect to the velocity, At the same time, as can be seen from Fig. 4, the value of Kj=¢ (1~
WS/W), whose distribution along the axis of the nozzle is shown by the dashed-dot curve, increases mono-
tonically with a rise in the value of (pf, for all values of x. However, the force action of the particles on
the gas is determined not only by the lag of the particles with respect to the velocity, but also by the ratio
of the densities of the particles and the gas. The change in the value of pg/p along the axis of the nozzle
for different values of qof is shown by the dashed curves. It must be noted that, with a transition from
equilibrium flow conditions to frozen conditions, there is a rise in the ratio of the densities of the particles
and the gas over almost the whole length of the nozzle. The latter leads to a nonmonotonic change, with
respect to (pf, in the value of K2=cpf(1-—WS/W)ps/p, taking account both of the contribution of the dynamic
lag of the particles, and of the ratio of the densities in the force action of the particles on the gas. The
distributions of the value of K, along the x axis for different values of of are shown by the solid curves.
The above-noted nonmonotonicity may be the reason for the previously discussed special characteristic
in the behavior of M for the gas at the axis of the nozzle with a change in the value of of. Article [4], which
gives a review on one-dimensional two-phase flow in nozzles, also contains data which bear witness to a
nonmonotonic change in the velocity of the gas with an increase in the interaction coefficient.

In conclusion, the author thanks A. N. Kraiko for his direction of the work, L. E. Sternin for his
valuable observations, and E. V. Buganov and L. P. Frolov for their aid in the work.
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INVESTIGATION OF TRANSONIC UNSTEADY-STATE FLOW
IN THE PRESENCE OF PHASE TRANSFORMATIONS

G. A, Saltanov and R, A. Tkalenko UDC 533.6.011 +536.423.4

INTRODUCTION

Condensation of supersaturated vapor in a transonic flow can lead to an unsteady-state character of
the flow. This is due to the evolution of the latent heat of condensation, to the formation of a shock wave,
and to its interaction with the zone of evaporation. This phenomenon was first noted in [1, 2], in which it is
shown that the character of the motion of the shock wave depends on the parameters in the initial cross
section, the relative moisture content, and the contour of the nozzle. In [3] there were measured consider-
able pulsations of the parameters of the flow (with a frequency of 500~1000 Hz), arising with the flow of
moist air and pure water vapor in air. In [4] an approximate law of similarity was introduced for the dimen-
sionless frequency of an unsteady-state flow. In communications [5, 6] the phenomenon under consideration
was studied by the method of the inversion of the action; [7, 8] give the results of theoretical calculations
and an experimentally confirmed diagram, making it possible to determine the boundaries of the region of
instability of the flow. It has been found recently that the frequency of the pulsations of the pressure and
the density in a flow with the condensation of moist air can attain 6000 Hz. In the present work, a modifica~-
tion of the method of Godunov {10] is used to obtain a numerical solution of a system of equations describing
an unsteady-state quasi~one-dimensional flow with spontaneous condensation in the transonic part of a Laval
nozzle. Calculations of nonequilibrium unsteady~state flows in nozzles by the method of establishment have
also been made previously, for example, in [11, 12] (mixed flow in nozzles), [13] (flow taking account of
vibrational relaxation and nonequilibrium chemical reactions), and [14] ¢wo-phase flow in a nozzle, with
disagreement of the phases with respect to velocities and temperatures). The specific characteristic of
the present problem consists in the fact that, during the process of establishment with steady-state initial
and boundary conditions, the limiting state is not steady-~state; however, a known periodicity is observed,

1. Let us consider the unsteady-state quasi-one-dimensional flow of supersaturated vapor in a Laval
nozzle, without taking account of viscosity, thermal conductivity, or radiation. We assume that the velocities
of the phases are identical, and that the condensation is spontaneous. The dependence of the area of the
transverse cross section of the nozzle on the coordinate x, varying along the axis, is given by the function
Fx); here x=0 corresponds to the minimal cross section of the nozzle. Let p be the pressure, p the den-
sity of the mixture, u the velocity, and t the time; the parameters of the condensing phase have the super-
script zero. The basic equations of the conservation of mass, momentum, and energy canbe written in the form

9

a
2 (oF) 5> (puF) = 0;

) ) -
S (ouF) + - [(p+ puy Fl = p &

A I i O
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